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ABSTRACT 
 
We demonstrate how to derive morphological information from micrographs, i.e., grey-level images, of polymeric foams. 
The segmentation of the images is performed by applying a pulse-coupled neural network. This processing generates blobs of 
the foams walls/struts and voids, respectively. The contours of the blobs and their corresponding points form the input to a 
constrained Delaunay tessellation, which provides an unstructured grid of the material under consideration. The subsequently 
applied Chordal Axis Transform captures the intrinsic shape characteristics, and facilitates the identification and localization 
of key morphological features. While stochastic features of the polymeric foams struts/walls such as areas, aspect ratios, etc., 
already can be computed at this stage, the foams voids require further geometric processing. The voids are separated into 
single foam cells. This shape manipulation leads to a refinement of the initial blob contours, which then requires the repeated 
application of the constrained Delaunay tessellation and Chordal Axis Transform, respectively. Using minimum enclosing 
rectangles for each foam cell, finally the stochastic features of the foam voids are computed. 
 

1. INTRODUCTION 
 
Hydrodynamic models are used to model the response of cellular materials (e.g., polymeric foams) to highly dynamic, cyclic, 
and non-equilibrium-inducing loading conditions involving large strains and large strain rates. For the description of cell-
level stresses such models may involve a deterministic single-cell mechanical model and employ probability functions1, 
which are used to describe the stochastic nature of the foam structure and polymeric material properties.  Details such as cell 
dimensions, shapes, orientations, strut/wall thickness, etc., may be used as independent variables upon which probability 
functions depend. 
 Polymeric foams are viewed as consisting of two separate but interacting materials – the cellular polymer and the 
permeating fluid (e.g., usually air) – each with its own distinct physical properties. Therefore, it is sufficient to decompose a 
given grey-level image of a cross-section of such a material into regions of the cellular polymer (“struts and/or walls”) and 
the permeating air (“voids”), respectively.  
 This paper is structured as follows: In the next section we explain first the binary image decomposition by using a pulse-
coupled neural network2 (PCNN). Then we explain in more detail the contour extraction of the image blobs. We demonstrate 
the transform of the spectral pixel information of a micrograph into an affine geometric description by applying a constrained 
Delaunay tessellation3 (CDT) and a subsequent Chordal Axis Transform4,5 (CAT). The latter transform allows us to 
distinguish between structurally (morphologically) important and unimportant shape features of the polymeric foams 
struts/walls and voids, respectively. The statistical shape properties of the foams struts and walls can be computed at this 
stage already very reliably. On the contrary, the foams void consists of a complicated network of merged, mostly convex 
shaped, single void cells. Since we would like to capture the statistical nature of these individual void cells, rather than the 
shape features of the foams permeating fluid as a whole, we are faced with the task of a proper shape break-up of the foams 
large void. We are going to explain, how we accomplish this shape decomposition, which then leads to a refinement of the 
initial image blob contours. We repeat the application of the CDT and the CAT, respectively. For the final computation of the 
voids single cells statistical properties we are using minimum enclosing rectangles for extracting aspect ratios, in addition to 
the morphological information already provided by the CAT. This latter step will conclude our morphological analysis of 
cellular solids. 
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Figure1: Original Image 
 

 
Figure 2: Segmented image 



2. IMAGE PROCESSING 
 

In this section we are processing a micrograph of a polymeric foam with pixel based and geometry based techniques, 
respectively. The following subsections address the tasks of image segmentation, contour extraction, region tessellation, 
extraction and classification of morphological shape features, contour refinement, and the extraction of statistical shape 
properties. 
 
2.1 Image segmentation 
 
The pulse-coupled neural network model of the cat visual cortex6,7 has been proven to have very interesting properties for the 
purpose of image processing. In Ref. 2, the micrograph8 as shown in Fig. 1 was processed using a PCNN. In this previous 
work, we were able to demonstrate that the PCNN is a useful tool for image preprocessing such as image denoising and 
segmentation. The integration of smoothing, segmentation, and the addition of output binary images enabled us to automate 
the process of processing images of cellular solids such as the polymeric foam considered here. Manual intervention was only 
necessary in order to select which image among those generated was the best. We hope to automate this selection process in 
the future as well. The image segmentation by itself was performed automatically. The result of our PCNN application for the 
micrograph in Fig. 1 is shown in Fig. 2 (cf., Ref. 2 for further detail).  
 In the following, we show for the sake of illustration a cropped sub-image of Fig. 2 with increased magnification (cf., 
Fig. 3). However, all statistical evaluations given below in this paper are made while using the whole segmented image as 
shown in Fig. 2. 
 
2.2 Contour extraction 
 
The next step after the image segmentation is the contour extraction of the generated blobs. For the material science 
application under consideration we initially desire blob contours, which are non-degenerate, i.e., which always enclose an 
area larger than zero, and which never cross or overlap each other. Furthermore, the contours should be oriented with respect 
to the objects and their possible holes.  
 In Fig. 4, we show dilated contours as generated by the algorithm9, which is described in the paper by Schlei et al.10 and 
which fulfills all of the above stated requirements for the contours. Our code uses a bi-level image (cf., black and white 
image Fig. 4) as input and generates closed and dilated image blobs as output (cf. Fig. 5). This is done in two steps. First, the 
neighborhood of each white image pixel is evaluated for its contribution to an edge list. In the second step, the edge elements 
are linearly connected to closed contours, and finally the edge coordinates are dilated. In our example shown in Fig. 4, we  
 

Figure 3: Enlarged region of blobs  Figure 4: Contour enclosure  Figure 5: Delaunay tesselation  



have also reduced the number of contributing edge points, so that the subsequently generated tessellation network is not too 
dense for our illustration purposes. However, the full calculations take into account all edge points. We have reduced the 
number of edge points by replacing each set of four subsequent points in the contours with their coordinate averaged point. 
 
2.3 Constrained Delaunay tesselation and Chordal Axis Transform 
 
The constrained Delaunay tessellation of a simple planar polygon (contour) is a decomposition of a polygon into triangles, 
such that the circum-circle of each triangle contains no vertex of the polygon inside it that is simultaneously visible to two 
vertices of the triangle3. Note, that the CDT of the contours is the key step that allows for the shape feature extraction. 
  In Fig. 5, we transform through the CDT the spectral pixel information of our given micrograph into an affine geometric 
description. Our previous4,5 and ongoing11 work on 2-D shape analysis has amply demonstrated the value of Delaunay 
triangulations in obtaining structurally meaningful decomposition of shapes into simpler components, much along the lines 
the human visual system parses complex shapes. 2-D shapes can be decomposed into limbs and torsos4,5, which are generic 
shape components. This decomposition is accomplished by applying the CAT.  
 The triangles originating from the Delaunay triangulation can be classified into three types, namely those with two 
external (i.e., polygonal boundary) edges, those with one external edge, and those with no external edges. Each kind of 
triangle carries morphological information about the local structure of the shape’s enclosing polygon. Accordingly, they are 
given different names. A triangle with two external edges marks the termination of a “limb” or a protrusion of the polygon 
and is called a termination triangle or a T-triangle. A triangle with one external edge constitutes the “sleeve” of a “limb” or 
protrusion, signifying the prolongation of the polygon, and is called a sleeve triangle or S-triangle. Finally, a triangle that has 
no external edge determines a junction or a branching of the polygon, and is accordingly called a junction triangle or a J-
triangle.  
 In Fig. 6 and in Fig. 9, we show the T-, J-, and S-triangles for the walls/struts and the large void of the polymeric foam, 
respectively, with different shades of grey. The brightest triangles are S-triangles, whereas the darkest triangles are T-
triangles. The remaining triangles shown are J-triangles. A “limb” is a chain complex of pairwise adjacent triangles, which 
begins with a junction triangle and ends with a termination triangle. A “torso” is a chain complex of pairwise adjacent 
triangles, which begins and ends with a junction triangle4,5. 
 In Fig. 7 and in Fig. 10, we show the CAT skeletons for the walls/struts and the large void of the polymeric foam, 
respectively; whereas in Fig. 8 and in Fig. 11, we show their morphologically pruned versions, i.e., structurally insignificant 
shape features have been removed while preserving the local metrical features of the shapes under consideration (for more 
detail on the pruning process, please, cf., Refs. 4 and 5). Each arc of the skeletons represents a simplical chain complex of 
either a limb or a torso, respectively. 
 The statistical shape properties of the foams struts and walls are at this stage ready for their computation (cf., Section 2.5  
 

Figure 6: J-, S-, and T-triangles (walls) Figure 7: CAT skeleton (walls) Figure 8: pruned CAT skeleton (walls)  



 

Figure 9: J-, S-, and T-triangles (void) Figure 10: CAT skeleton (void) Figure 11: pruned CAT skeleton (void)  
 
“Material statistics”). On the contrary, the foams large void requires further image processing. 
 
2.4 Decomposition of the large void 
 
The polymeric foams large void consists of a complicated network (cf., Fig. 11) of merged, mostly convex shaped single void 
cells. For the description of, e.g., cell-level stresses, those models addressing the micro-mechanics of the materials under 
consideration require structural input at the single-cell level. We can provide such information by generating single void 
cells. 
 In order to decompose the foams large void into single void cells we make use of the CAT generated limbs and torsos.  
 

Figure 12: Refined contours (cells) Figure 13: Delaunay grid (cells) Figure 14: CAT skeleton (cells) 



Considering all the CDT edges which connect pairwise adjacent triangles within each torso and limb, we compute a new 
contour set element by choosing for each torso only the shortest CDT edge, and for each limb the CDT edge which belongs 
to its only junction triangle, respectively. The result is the original contour edge set and a new edge set, which decomposes 
the foams large void into single cells. In Fig. 12, we show the original contours and the newly formed refinement edge set, 
which are superimposed with the large voids pruned CAT skeleton. 
 In a subsequent step, we reconnect each of the present edge elements to new closed contours, where each of these new 
contours encloses at this time a single void cell in counter-clockwise orientation. Finally, we again perform a constrained 
Delaunay tessellation of the original contour point set and the refined contours (cf., Fig. 13) and we also perform a Chordal 
Axis Transform (cf., Fig. 14), respectively. The repeated application of the CAT enables us to compute the accumulated areas 
of the individual triangle areas in each void cell through the knowledge of their connectivity within a given void cell. At this 
time we are prepared for the computation of the statistical shape properties of the foams single void cells. 
 
2.5 Material statistics 
 
In this section, we show statistical distributions for the foams struts/walls and single void cells. In particular, we show in Fig. 
15 and in Fig. 16 histograms of areas, aspect ratios, widths and lengths of the corresponding objects. We note, that the 
micrograph shown in Fig. 1 leads after the applied PCNN image segmentation (cf., Fig. 2) to 1217 strut/wall segments and to 
1370 single void cells. We use here a geometric pruning threshold of 60% (cf., Ref.s 4 and 5). The original image consists of 
1024x624 pixels. 
 For the walls/struts we collect the metrical features (areas, lengths, widths) of each limb and torso (after pruning), 
whereas for the void cells we accumulate in each single void cell the area only. For the walls and struts, their lengths and 
widths induce their corresponding aspect ratios. On the contrary, for the single void cells we compute a minimum enclosing 
rectangle around each cell, so that the known area of the cells and the aspect ratio of the minimum enclosing rectangle around 
each cell induce the cells widths and lengths, respectively. The aspect ratios are normalized such that they always fall into the 
range between 0 and 1. 
 

3. SUMMARY 
 
In summary, our algorithms transform the spectral pixel information of a micrograph into an affine geometric description, 
which allows us to analyze the morphology of cellular solids. Our algorithms are superior to many common12 pixel based 
shape thinning (skeletonization) methods, because our geometric approach produces high-level shape constituents, i.e., limbs 
and torsos, which are the basis for the here presented morphological shape manipulation of the polymeric foams large void.  
 

 

 
Figure 15: Histograms of areas, aspect ratios, widths and lengths for wall material (1 unit = 1 pixel) 

 
Figure 16: Histograms of areas, aspect ratios, widths and lengths for foam voids (1 unit = 1 pixel) 
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